
Tacit J and K

by ngn

December 30, 2021

Definitions and Notation

Tacit programming is programming without mentioning function arguments ex-
plicitly. Complex functions are constructed from simpler ones through the ap-
plication of higher-order functions called combinators.

Noun-verb syntax is the basic value-level (as opposed to function-level) syn-
tax used in APL, J, and K. A verb is applied to the whole expression on its right
and, if possible, also to a single noun on its left. Thus, verbs are prefix monadic
fx or infix dyadic xfy (by convention we use x, y, z for nouns and f ,g,h . . . for
verbs even though in K an identifier is always a noun). Noun-verb syntax can
be extended with adverbs which are postfix and have higher precedence than
verb applications, and conjunctions—infix and with the same precedence as ad-
verbs. The application of an adverb or conjunction forms a derived verb. In
APL adverbs and conjunctions are usually called operators.

A train, in the context of noun-verb syntax, is a sequence of nouns or verbs
(its carriages) ending with a verb. Normally, such a sequence is meaningless, as
the last verb has nothing on its right to play the role of right argument, but if
given the semantics of a combinator, it can serve as a convenient mechanism for
tacit programming. All three major array languages implement this idea, but
in different ways.

Tacit J

J’s and APL’s adverbs and conjunctions are a limited form of higher-order
functions and can be used as combinators for tacit programming.

Additionally, J treats 2- and 3-trains as the hook and fork combinators,
namely:

(fg)y⇔yf(gy) (fgh)y⇔(fy)g(hy) (zgh)y⇔zg(hy)
x(fg)y⇔xf(gy) x(fgh)y⇔(xfy)g(xhy) x(zgh)y⇔zg(xhy)

Longer trains are reduced, starting from the right, to nested forks, possibly
ending with a hook, for example:

fghijklm⇔ f(gh(ij(klm)))

1

We refer to this interpretation of trains as J-style, or zebra trains, or odd-even
trains.

Inserting a monadic verb in a J train is inconvenient, so the language sup-
ports a special verb-like token—“[:”, called cap, to suppress the left argument
of a fork’s middle verb:

([:gh)y⇔g(hy)
x([:gh)y⇔g(xhy)

In the early 2010s Dyalog APL adopted J-style trains, replacing hooks with
atops and eliminating cap:

(fg)y⇔f(gy)
x(fg)y⇔f(xgy)

Neither APL nor J assign meaning to trains that have a noun at an odd
0-indexed position starting from the right. For instance, 1+ and *2- give syntax
errors.

J-style trains have the following drawbacks:

• The fork combinator is given the most minimal syntax possible—the 3-
train, even though it’s not that fundamental or commonly needed.

• Verbs at odd vs even positions are applied differently—to the argument(s)
vs to the results from neighbouring verbs:

x(fghijklm)y ⇔ f→ h→ j → l
↙ ↓ ↓ ↓ ↘

x g i k m
↓↓ ↓↓ ↓↓ ↓↓
xy xy xy xy

It’s hard to keep track of that in a longer train, as the factors affecting it
lack locality—in order to determine how a carriage is applied, the reader
must understand and count all carriages to its right.

• Fork-hook syntax feels like a sublanguage that doesn’t fit in. Grouping
carriages in threes is substantially different from ordinary noun-verb syn-
tax and its mirror image—adverb-conjunction syntax.

noun-verb grammar e:N|Ve|NVe

adverb-conjunction grammar e:V|eA|eCV

fork-hook grammar e:Vf|f f:V|VVf

Tacit K

K has multiple incompatible versions. For simplicity we limit the examples in
this section to K6 as implemented in ngn/k.

K functions are first-class values and support up to 8 arguments through
M-expression syntax (f[x;y;...]). The simplest way to program tacitly is to
implement combinators as ordinary functions. For instance, fork could be

2

{[f;g;h;x] g[f x;h x]}

{[f;g;h;x;y] g[f[x;y];h[x;y]]}

partially applied to f, g, and h. The monadic and dyadic versions must be
separate because K functions have fixed valence (number of arguments).

K has trains too, but in contrast with J’s, they don’t form forks. A noun-verb
combo creates a partial application called projection:

(xf)y ⇔ xfy

A pair of verbs (including the noun-verb projections above) forms a compo-
sition in which the left verb is applied to the result from the right verb. The
composition’s valence is the valence of the right verb:

(fg)x⇔f(gx)
(fg)[x; y]⇔f(xgy)

Note that f and g here are meant as verbs, not identifiers f and g. K’s
grammar treats all identifiers, parenthesized expressions, and lambdas as nouns.
They cannot be applied infix, but dyadic application is possible through an M-
expression like (fg)[x; y].

Longer trains follow the same rules right-to-left, so all carriages except the
last are interpreted as monadic. The last carriage determines the valence of the
entire train. Some examples of K trains are:

(1+)x⇔ 1+x

(-*)x⇔ -*x

(%*)[x;y]⇔ %x*y

(1-_%*)[x;y]⇔ 1-_%*[x;y]⇔ 1-_%x*y

The syntax of a K train matches the syntax of ordinary K expressions, so its
application boils down to removing the parentheses around the train.

K can express a fork through the train

g/(f;h)@\:

where (f;h) is a list of the functions f and h,
@ is the “apply” verb,
\: is the “each left” adverb,
and g/ is “fold”—g applied over the pair of results from f and h.

Hook is
f/1 g\

where 1 g\ is one iteration of g over the argument, i.e. the pair (x;g x), and
f/ applies f between x and g x

3

